
Session 1: 2D Path
Planning, its importance
and its application

Report Authored By: Antriksh Singh Rathore, Kshitij Gupta

Faculty Coordinator: Dr. Neelam Srivastava Ma’am, ECE Dept. IET
Lucknow

Mentees of the Session : Antriksh Singh Rathore, Kshitij Gupta,
Abhinav Kumar, Anindya Ranjan Samaddar, Ashish Singh, Divyansh
Jaiswal, Gaurav Chaurasiya

Mentors of the Session: Aastha Chauhan, Anshuman Singh,
Saksham Gautam, Keshav Gupta

Email : antrikshrs28@gmail.com , kshitijgupta084@gmail.com

mailto:antrikshrs28@gmail.com
mailto:kshitijgupt084@gmail.com

1

March 9, 2023

DAY 1

What is 2D Path
Planning ?
The computation of an
ideal or practical path for
a robot or item to navigate
in a two-dimensional (or
even three-dimensional)
space is called path
planning.

What will be
the future of
2D path
planning?

As a result of continuous
study and technical
progress, 2D path planning is anticipated to experience improvements in a number
of areas in the future. Here are some prospective developments and trends:

2

1.) Collision Avoidance:
To ensure that robots or objects can
navigate without colliding with other
items or obstacles in a specific area, 2D path
planning's main goal. Path planning
algorithms compute safe and obstacle-free
courses, which helps to avoid collisions,
lessen damage to the robot or its
surroundings, and improve overall safety.

2.) Autonomous Navigation:
For autonomous robots and vehicles to
successfully explore challenging areas
without human assistance, path planning is
crucial. These systems can perform tasks like
autonomous exploration, surveillance,
delivery, or transportation by developing
optimal pathways that allow them to work
effectively, avoid impediments, and arrive at
their objectives.

3.) Real-World Applications:
Aerial surveillance, robotics, manufacturing, logistics, warehouse automation,
agriculture, search and rescue operations, and other fields are just a few of the
real-world uses for 2D path planning. It makes it possible to move in complicated
and dynamic situations safely and effectively, increasing output, lowering labour
requirements, and opening up new possibilities.

4.) Virtual Environments and Simulations:
2D route planning is used to model the mobility of actors, objects, or entities in
computer graphics and virtual simulations. In video games, virtual reality (VR),
augmented reality (AR), or virtual training simulations, path planning algorithms
allow realistic and natural-looking movement, interaction, and navigation within the
virtual environment.

3

What are the methods of 2D path planning?
There are several
methods and algorithms
for 2D path planning.
Here are some commonly
used approaches:

1.) Grid-Based Methods:

Grid-based algorithms divide the environment into a grid of cells, where each cell
represents a portion of the space. These methods include:

● Dijkstra's Algorithm:

It is a graph search
algorithm that computes
the shortest path from a
start point to a goal point
by exploring the grid cells.

● A* Algorithm:

A* combines Dijkstra's
algorithm with heuristics
to improve efficiency. It
uses a cost function that
considers both the path
cost from the start point and an estimate of the remaining cost to the goal.
A* is widely used for optimal pathfinding.

4

2.) Potential Field Methods:
Potential field algorithms represent the
environment as a field where attractive
forces guide the robot towards the goal,
while repulsive forces repel it from
obstacles. These methods include:

● Artificial Potential Field (APF): APF
assigns attractive potentials to the
goal and repulsive potentials to
obstacles. The robot moves along the
gradient of the potential field towards
the goal while avoiding obstacles.

● Elastic Band Method: This method
represents the path as a continuous
elastic band. The band is deformed to
avoid obstacles, and the robot follows the deformed band as it moves
towards the goal.

3.) Visibility Graph Methods:
Visibility graph algorithms construct a graph by connecting visible points in the
environment and finding the shortest path on this graph. These methods include:

● Voronoi Diagram:
Voronoi diagrams divide
the space into regions
based on proximity to
obstacles. The paths
between Voronoi vertices
represent feasible paths.

● Tangent Bug Algorithm:
The Tangent Bug
Algorithm uses the
visibility graph and
incremental movements to navigate around obstacles. It moves along the
obstacle boundary until a point on the visibility graph is reached.

5

4.) Sampling-Based Methods:
Sampling-based algorithms randomly sample the configuration space and build a
roadmap to search for feasible paths. These methods include:

● Probabilistic Roadmap (PRM): PRM samples random points in the
environment and connects them to build a graph. It then performs graph
search algorithms to find a path between the start and goal points.

● Rapidly Exploring Random Tree (RRT): RRT incrementally builds a tree
structure by extending the tree towards randomly sampled points. It rapidly
explores the configuration space and finds a feasible path.

These are just a few examples of the methods used in 2D path planning. Each
method has its strengths and weaknesses, and the choice of algorithm depends on
the specific requirements of the application, the complexity of the environment,
and the desired performance characteristics.

6

5.) Conclusions:

During the session on 2D path planning, we explored the significance of path
planning and discussed various methods. We highlighted grid-based approaches
such as Dijkstra and A*, which divide the environment into a grid and find the
optimal path based on distance or heuristics. Additionally, we covered potential
field methods like elastic bands and artificial potential fields that leverage
attractive and repulsive forces to guide the path. Visibility graph techniques,
including Voronoi and tangent-based methods, utilize visibility relationships
between points to determine feasible paths. Lastly, we delved into
sampling-based methods such as Probabilistic Roadmaps (PRM) and
Rapidly-Exploring Random Trees (RRT), which employ random sampling to
generate a roadmap or tree structure for path planning. These methods offer
diverse approaches to tackling the challenges of 2D path planning.

What will we do in the next session?
In the next session, we will understand more about Dijkstra’s algorithm and its
application.

https://www.youtube.com/watch?v=EFg3u_E6eHU

7

References

1. www.willowgarage.com , www.thingsinsquares.com for reference images

2. How Dijkstra's Algorithm Works - YouTube Video reference

http://www.willowgarage.com
http://www.thingsinsquare.com
https://www.youtube.com/watch?v=EFg3u_E6eHU

8

DAY 2: Dijkstra’s Algorithm & Its Application March17,2023

Overview:

Dijkstra's algorithm is a popular graph traversal algorithm used to find the shortest path between a
starting node and all other nodes in a graph. It was developed by Dutch computer scientist Edsger W.
Dijkstra in 1956. The algorithm is commonly used in various applications, including network routing
protocols, GPS navigation systems, and graph analysis.

Objective:

❖ What is the importance of the Dijkstra Algorithm?
❖ What are the methods of the Dijkstra Algorithm?
❖ What are the applications of the Dijkstra Algorithm?

Importance Of Dijkstra Algorithm

Dijkstra's algorithm is highly relevant and important in the field of robotics, particularly in the domain of
path planning and navigation. Here are some reasons why Dijkstra's algorithm holds significance in
robotics:

1. Path Planning:

In robotics, path planning involves determining a safe and efficient path for a robot to navigate
from a starting point to a goal location while avoiding obstacles. Dijkstra's algorithm can be
employed to find the shortest path, taking into account obstacles and terrain information
encoded in a graph representation of the environment.

2. Real-time Navigation:

Real-time navigation is crucial for robots to autonomously move in dynamic environments.
Dijkstra's algorithm, with appropriate optimizations and data structures, enables efficient and
quick calculation of the shortest path.

3. Multi-Robot Systems:

Dijkstra's algorithm is valuable in multi-robot systems, where multiple robots need to coordinate
their paths to avoid collisions and congestion. By calculating the shortest paths for each robot
individually, potential conflicts can be resolved, and efficient routes can be planned for the entire
robotic system.

4. Simplicity and Understandability:

Dijkstra's algorithm has a straightforward and intuitive implementation, making it easily
understandable and implementable in robotic systems. Its simplicity aids in rapid prototyping,
testing, and debugging of navigation algorithms.

5. Integration with Sensor Data:

Dijkstra's algorithm can be combined with sensor data from various sources, such as cameras,
lidar, or depth sensors, to create a more informed graph representation of the environment.

Method Of Dijkstra Algorithm

9

In robotics, the implementation of Dijkstra's algorithm for path planning and navigation typically involves
several key methods. Here are the main steps involved in applying Dijkstra's algorithm in the robotics
domain:

1. Graph Representation:

First, the environment in which the robot operates needs to be represented as a graph. The
nodes of the graph represent the locations or cells in the environment, and the edges represent
the connections between them. The graph can be constructed based on a grid-based
representation or a connectivity-based representation, depending on the specific application.

2. Initialization:

Initialize the graph by assigning a distance value to each node. Set the distance of the starting
node to 0 and the distance of all other nodes to infinity. Keep track of the visited and unvisited
nodes.

3. Iterative Process:

The algorithm proceeds iteratively until all nodes have been visited or the goal node has been
reached. In each iteration, the following steps are performed:
a. Select the node with the smallest distance among the unvisited nodes. This node becomes the
current node.
b. For each neighboring node of the current node:

● Calculate the tentative distance from the starting node to the neighboring node by
adding the weight of the edge connecting them.

● If the tentative distance is smaller than the previously recorded distance, update the
distance and set the current node as the previous node for the neighboring node.

c. Mark the current node as visited and remove it from the unvisited nodes.

4. Termination:

Once all nodes have been visited or the goal node has been reached, the algorithm terminates.
The shortest path from the starting node to each node in the graph is determined based on the
recorded distances and previous nodes.

5. Path Extraction:

To obtain the actual path the robot should follow, starting from the goal node, follow the
recorded previous nodes back to the starting node. This process retrieves the sequence of nodes
that form the shortest path.

Explanation of Dijkstra’s algorithm for finding the shortest path between one vertex in a graph:

Let distance of start vertex from start vertex=0

Let distance of all other vertex from start =∞(infinity)

Repeat

✔ Visit the unvisited vertex with the smallest known distance from the start vertex
✔ For the current vertex, examine its unvisited neighbours
✔ For the current vertex , calculate distance of each neighbour from start vertex
✔ If the calculated distance of a vertex is less than the known distance , update the shortest

distance
✔ Update the previous vertex for each of the updated distances

10

✔ Add the current vertex to the list of visited vertices until all vertices visited

Dijkstra

Node Distance from A Previous Node
A(start) 0 -

B 4 A

C 4 A

D 7 C

E 5 C

F(end) 8 E

A-C-E-F

Applications Of Dijkstra Algorithm

Dijkstra's algorithm finds significant application in robotics, particularly in the areas of path
planning, navigation, and obstacle avoidance. Here are some specific applications where Dijkstra's
algorithm is commonly used in robotics:

1. Robot Path Planning:

Dijkstra's algorithm is widely employed to find the shortest path for a robot to navigate from a
starting point to a goal location in a known environment. By considering the costs or weights
associated with different regions or edges, the algorithm determines the optimal path that
minimizes travel time, energy consumption, or other relevant factors.

2. Robot Navigation in Grid-based Environments:

Dijkstra's algorithm is often utilized in grid-based environments, where the robot operates on a
discretized grid. It can efficiently determine the shortest path while avoiding obstacles
represented as occupied grid cells. This application is commonly used in mobile robotics, such as
autonomous robots navigating in indoor environments or drones planning paths in grid-like
structures.

3. Autonomous Ground and Aerial Vehicles:

Dijkstra's algorithm is employed in the navigation systems of autonomous ground and aerial
vehicles. The algorithm considers the terrain, dynamic obstacles, and other constraints to
generate safe and optimal paths.

11

4. Real-time Obstacle Avoidance:

Dijkstra's algorithm can be used in combination with sensor data, such as lidar or depth sensors,
to perform real-time obstacle avoidance. By continuously updating the graph representation
based on the sensor readings and recalculating the shortest path.

5. Robot Localization and Mapping:

Dijkstra's algorithm is utilized in simultaneous localization and mapping (SLAM) algorithms to
optimize the estimated robot pose and map. It assists in determining the robot's location and
building an accurate map of the environment based on sensor measurements and estimated
paths.

These are just a few examples highlighting the wide-ranging applications of Dijkstra's algorithm in
robotics. Its versatility, efficiency, and ability to handle complex environments make it a valuable tool for
enabling safe and efficient robot navigation and path planning in various robotic systems.

Overview For Next Session:

In next session it will discuss about 2D path planning, line follower robot and Introduction To PID
Controller

Resources :

Author:

Divyansh Jaiswal

Electronics And Communication Engineering (2nd Year)

Email: divyanshjai95@gmail.com

LinkedIn: https://www.linkedin.com/in/divyansh-jaisawal-8bb504252

Gaurav Chaurasiya

Mechanical Engineering (2nd Year)

Email :

LinkedIn :

Mentors:

Aastha Chauhan, Anshuman Singh, Saksham Gautam, Keshav Gupta

Electronics And Communication Engineering (3nd Year)

Email:

LinkedIn:

mailto:divyanshjai95@gmail.com
https://www.linkedin.com/in/divyansh-jaisawal-8bb504252

12

Faculty Coordinator :

Dr. Neelam Srivastava

H.O.D (ECE Department)

Institute Of Engineering And Technology , Lucknow

13

Session 3: 2D Path Planning
and Line Follower Robot

Report Authored By: Anindya Ranjan Samaddar, Abhinav Kumar

Faculty Coordinator: Dr. Neelam Srivastava Ma’am, ECE Dept. IET
Lucknow

Mentees of the Session : Antriksh Singh Rathore, Kshitij Gupta,
Abhinav Kumar, Anindya Ranjan Samaddar, Ashish Singh, Divyansh
Jaiswal, Gaurav Chaurasiya

Mentors of the Session: Aastha Chauhan, Anshuman Singh,
Saksham Gautam, Keshav Gupta

Email : anindyarsam@gmail.com

14

April 28, 2023

DAY 3

Overview of the session:
Earlier sessions covered the importance of 2D path planning, its different
algorithms, and the Dijkstra algorithm in particular.

In this session, as part of our ongoing effort to fully comprehend path
planning and use it in real-world scenarios, we focused on the hardware
design element of mobile 2D path planning.

This session's objectives were to teach students how to construct a Line
Follower Robot and to help them understand its fundamental concepts; the
subsequent session would let them incorporate 2D path planning into it.

Objectives:
1. Explore the design and implementation of a Line Follower Robot (LFR).

2. Discover the PID controller's operation and its guiding principles.

3. Gain practical experience in wiring, connections, and code development of
the hardware system.

15

Line Follower Robot (LFR):

INTRODUCTION:

A line follower is a type of mobile
robot that uses sensors to detect
and follow a line or path marked on
the ground. The robot's control
system processes sensor data to
adjust its movements, keeping it on
track. Line followers are often used
for educational purposes, teaching
programming and robotics concepts.
They can also be used in industries
such as automation, logistics, and
surveillance.

COMPONENTS USED:

• Arduino Uno

• L298N motor driver

• Plastic gear motor

• Array of 5 IR sensor

• Li-ion battery 2000MAh

• Jumper wires

• Switch

16

WORKING PRINCIPLE:

1. IR Sensor Detection:
• The LFR is equipped with infrared (IR) sensors placed close to the

ground.
• The sensors detect the contrast between the line and the surface.

• When the sensors are over the line, they receive less reflected light
compared to when they are over the surface.

2. Sensor Readings:
• Each IR sensor generates analog or digital signals based on the amount

of reflected light it receives.
• The sensor readings provide information about the position of the

line relative to the sensors.

3. PID Controller:
• The PID controller is a feedback control algorithm used to adjust the

robot's movements based on the error between the desired position (on
the line) and the actual position (sensor readings).

17

• It consists of three components: proportional, integral, and
derivative.

• The PID controller calculates control signals that regulate the robot's
speed, direction, and turning.

➢ Error Calculation and PID Tuning:
• The PID controller compares the

desired position (on the line) with the
actual position (sensor readings) to
calculate the error.

• The error represents the deviation of
the robot's position from the desired
position.

• We have used the Ziegler-Nichols
method to tune the PID controller.

➢ PID Control Signal Calculation:
• The PID controller uses the error to calculate control signals that

adjust the robot's movements.
• The proportional component contributes to immediate

adjustments based on the current error.
• The integral component accounts for cumulative errors over time,

addressing any steady-state errors.

18

• The derivative component anticipates future errors based on the
rate of change of the error.

Understanding the PID Control
4. Adjusting Movements:
• Based on the PID control signals, the LFR adjusts its motor speeds or

steering mechanisms to correct its position.
• For example, if the robot detects that it is deviating from the line to the

right, it might decrease the speed of the right motor or increase the
speed of the left motor to steer back onto the line.

5. Continuous Monitoring and Adjustment:
• By continuously monitoring the IR sensor readings, calculating

control signals using the PID controller, and adjusting its movements
accordingly, the LFR can accurately follow a line or path on the ground.

https://youtu.be/4Y7zG48uHRo

19

BLOCK DIAGRAM:

ARDUINO CODE:

To view the code, click the link:

https://create.arduino.cc/editor/hexacom06/5bba2d8e-742e-4287-afd3-ac22
0c626f6d/preview

https://create.arduino.cc/editor/hexacom06/5bba2d8e-742e-4287-afd3-ac220c626f6d/preview
https://create.arduino.cc/editor/hexacom06/5bba2d8e-742e-4287-afd3-ac220c626f6d/preview

20

Code brief:

1. Initialization: In the setup() function, the code sets up the necessary
pins.

2. Sensor Readings: In the loop() function, the code reads the analog
sensor values from five different pins (A0 to A4) using the analogRead()
function. The sensor values represent the intensity of the reflected
light.

3. Digital Conversion: The analog sensor readings are compared to a
threshold value (thres). If a sensor reading is above the threshold, the
corresponding element in the a_digital array is set to 1, indicating a
white surface. Otherwise, it is set to 0, representing a black surface.

4. Error Calculation: Based on the digital sensor readings, the code
determines the current position of the line relative to the center of the
robot. This is done by evaluating the combinations of black and white
surfaces detected by the sensors. The resulting error value represents
the position error of the robot with respect to the line.

5. PID Calculation: The code applies a PID (Proportional - Integral -
Derivative) control algorithm to compute a control signal based on
the error value. The proportional, integral, and derivative terms (KP, KI,
and KD, respectively) are multiplied by their respective error components
(error, i, and d) to calculate the PID value.

6. Motor Control: The motor speeds are adjusted based on the PID value.
The speed_left and speed_right variables are calculated by adding or
subtracting the PID value from a base speed of 100.

7. Motor Output: The analogWrite() function is used to control the motor
speeds, and the digitalWrite() function sets the appropriate pins to
control the motor directions.

8. Serial Output: The analog sensor readings are printed to the serial
monitor using the Serial.print() function for monitoring and debugging
purposes.

21

CONCLUSION:
The workshop provided an extensive overview of the LFR with a PID
controller. It provided useful insights into the operating principle and control
mechanism of this autonomous robot. The LFR proved to be a useful and
dependable solution for autonomous line following in a range of conditions
by employing infrared (IR) sensors to detect the line and a PID controller to
manage its motions. The LFR demonstrated effective line-following
capabilities.

Here are some clicks from the session:

22

What will we do in the next session?
In the next session, we will learn how to Integrate the Path Planning Logic
and the Line Following Logic.

Reference Links:
Here are a few links to quench your craving for more knowledge:

1. More on PID control:
Understanding PID Control - YouTube

2. Similar LFR project on Arduino:
Line Follower Robot (with PID controller) | Arduino Project Hub

3 .Embedded video on PID Control
Controlling Self Driving Cars

https://youtu.be/4Y7zG48uHRo
https://www.youtube.com/playlist?list=PLn8PRpmsu08pQBgjxYFXSsODEF3Jqmm-y
https://projecthub.arduino.cc/anova9347/01813f24-6fd7-4cea-b43b-3c0b78bcab16

